Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment
نویسندگان
چکیده
An analysis of a regional severe weather outbreak that was related to a mesoscale convective vortex (MCV) is performed. The MCV-spawning mesoscale convection system (MCS) formed in northwest Kansas along the southern periphery of a large cutoff 500-hPa low centered over western South Dakota. As the MCS propagated into eastern Kansas during the early morning of 1 June 2007, an MCV that became evident from multiple data sources [e.g., Weather Surveillance Radar-1988 Doppler (WSR-88D) network, visible satellite imagery, wind-profiler data, Rapid Update Cycle 1-hourly analyses] tracked through northwest Missouri and central Iowa and manifested itself as a well-defined midlevel short-wave trough. Downstream of the MCV in southeast Iowa and northwest Illinois, southwesterly 500-hPa winds increased to around 25 m s over an area with southeasterly surface winds and 500–1500 J kg of surface-based convective available potential energy (CAPE), creating a favorable environment for severe weather. In the favorable region, multiple tornadoes occurred, including one rated as a category 3 storm on the enhanced Fujita scale (EF3) that caused considerable damage. In the analysis, emphasis is placed on the role of the MCV in leading to a favorable environment for severe weather. In addition, convection-allowing forecasts of the MCV and associated environmental conditions from the 10-member Storm-Scale Ensemble Forecast (SSEF) system produced for the 2007 NOAA Hazardous Weather Testbed Spring Experiment are compared to those from a similarly configured, but coarser, 30-member convection-parameterizing ensemble. It was found that forecasts of the MCV track and associated environmental conditions (e.g., midlevel winds, low-level wind shear, and instability) were much better in the convection-allowing ensemble. Errors in the MCV track from convection-parameterizing members likely resulted from westward displacement errors in the incipient MCS. Furthermore, poor depiction of MCV structure and maintenance in convection-parameterizing members, which was diagnosed through a vorticity budget analysis, likely led to the relatively poor forecasts of the associated environmental conditions. The results appear to be very encouraging for convection-allowing ensembles, especially when environmental conditions lead to a high degree of predictability for MCSs, which appeared to be the case for this particular event.
منابع مشابه
Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood*
Observations and numerical simulations are used to investigate the atmospheric processes that led to extreme rainfall and resultant destructive flash flooding in eastern Missouri on 6–7 May 2000. In this event, a quasi-stationary mesoscale convective system (MCS) developed near a preexisting mesoscale convective vortex (MCV) in a very moist environment that included a strong low-level jet (LLJ)...
متن کاملMachine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts
Probabilistic quantitative precipitation forecasts challenge meteorologists due to the wide variability of precipitation amounts over small areas and their dependence on conditions at multiple spatial and temporal scales. Ensembles of convection-allowing numerical weather prediction models offer a way to produce improved precipitation forecasts and estimates of the forecast uncertainty. Thesemo...
متن کاملNeighborhood-Based Verification of Precipitation Forecasts from Convection-Allowing NCAR WRF Model Simulations and the Operational NAM
Since 2003 the National Center for Atmospheric Research (NCAR) has been running various experimental convection-allowing configurations of the Weather Research and Forecasting Model (WRF) for domains covering a large portion of the central United States during the warm season (April–July). In this study, the skill of 3-hourly accumulated precipitation forecasts from a large sample of these conv...
متن کاملSevere convection and lightning in subtropical South America
Satellite radar and radiometer data show that subtropical South America has the world’s deepest convective storms, robust mesoscale convective systems, and very frequent large hail. We determine severe weather characteristics for the most intense precipitation features seen by satellite in this region. In summer, hail and lightning concentrate over the foothills of western Argentina. Lightning ...
متن کاملConvection and Shear Flow in TC Development and Intensification
The objectives are: (1) to study the convection and vorticity generations in the vortex environment that may lead to the development and intensification of tropical cyclone; (2) to study the development and evolution of deep moist mesoscale convective system subject to strain effect due to the horizontal shear associated with the vortex rotation, and the possible offsetting with the convection ...
متن کامل